Abstract
Mechanical size effects are a well known phenomenon when the sample volume is reduced or the characteristic length of the microstructure is changed. While size effects in micropillar compression (smaller is stronger) or due to grain refinement (Hall-Petch) are well understood, this is less so in fracture mechanics. Given this lack of knowledge, the main question addressed in this work is: What happens to the fatigue crack growth properties when extrinsic size effects play a role? To answer this question, nanocrystalline nickel cantilevers, ranging in width from 5 to ▪, were subjected to fatigue crack growth. The crack growth rates and stress intensity factors were calculated and the Paris exponent in the stable crack growth regime was determined. It was found that the results scatter more strongly for the smaller cantilevers compared to the larger cantilevers. Results are interpreted in terms of plastic zone size and ligament size which are found to be critical for small cantilevers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.