Abstract

Various two-dimensional (2D) side-chain-substituted benzo(1,2-b:4,5-b')dithiophene (BDT) blocks have been used to construct donor polymers, whereas the size effect of the side chains on the photovoltaic performance was overlooked in the past few years. In this work, three size-varied conjugated spaces (benzene, naphthalene, and biphenyl) were introduced into the corresponding polymers PBDB-Ph, PBDB-Na, and PBDB-BPh. This space engineering has a significant impact on the extent of phase separation in the active layer which blended with the polymer and the acceptor ITCPTC and preserved the desired morphology. The varied space size in the side chains lead to distinct balance mobility ratios of holes to electrons (benzene, 0.21; naphthalene, 0.75; and biphenyl, 0.57). Finally, PBDB-Na-based polymer solar cells (PSCs) delivered the highest power conversion efficiency of 12.52% when compared to the PSC performances of PBDB-Ph (8.48%) and PBDB-BPh (11.35%). The method in tailoring the side chain structures could fabricate a balance between phase separation and charge transport, providing an enlightenment for the development of photovoltaic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.