Abstract

Can the properties of the thermodynamic limit of a many-body quantum system be extrapolated by analyzing a sequence of finite-size cases? We present models for which such an approach gives completely misleading results: translationally invariant, local Hamiltonians on a square lattice with open boundary conditions and constant spectral gap, which have a classical product ground state for all system sizes smaller than a particular threshold size, but a ground state with topological degeneracy for all system sizes larger than this threshold. Starting from a minimal case with spins of dimension 6 and threshold lattice size [Formula: see text], we show that the latter grows faster than any computable function with increasing local spin dimension. The resulting effect may be viewed as a unique type of quantum phase transition that is driven by the size of the system rather than by an external field or coupling strength. We prove that the construction is thermally robust, showing that these effects are in principle accessible to experimental observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.