Abstract

The random triangles discussed in this paper are defined by having the directions of their sides independent and uniformly distributed on (0, π). To fix the scale, one side chosen arbitrarily is assigned unit length; let a and b denote the lengths of the other sides. We find the density functions of a / b, max{a, b}, min{a, b}, and of the area of the triangle, the first three explicitly and the last as an elliptic integral. The first two density functions, with supports in (0, ∞) and (½, ∞), respectively, are unusual in having an infinite spike at 1 which is interior to their ranges (the triangle is then isosceles).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.