Abstract

The degradation of liposomes in blood circulation is important in regulating the releasing rate of encapsulated compounds. In this study, the effect of liposome size--one of the principal determining factors in liposome disposition--on their degradation in serum/blood was evaluated quantitatively both in vitro and in vivo. In the in vitro study, the time courses of the degradation of liposomes in fresh rat serum were measured continuously using 5(6)-carboxyfluorescein (CF) as an aqueous phase marker and were described by the kinetic model with the lag time (tau), first order degradation rate constant (k), and the maximum degradation (alpha). Both k and alpha increased with the increase of liposome size, which indicated a higher affinity of larger liposomes for complement activation. In the in vivo study, the degradation of liposomes was evaluated sensitively by a first order degradation rate constant (kd) in blood circulation. The kd was obtained by kinetically modeling the liposome degradation in vivo using 3H-inulin as an aqueous phase marker. The size dependent kd correlated well with the hepatic uptake clearance, which suggests an underlying complement activation mechanism common to both degradation and hepatic uptake of liposomes. There was a good correlation in the degradation rate constant between in vitro and in vivo trials. These kinetic analyses validate the quantitative evaluation of liposome degradation in blood circulation and provide a useful way to predict the degradation of liposomes in vivo from in vitro experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.