Abstract

Abstract Although gold in bulk is poorly active as a catalyst, it exhibits surprisingly high catalytic activity when deposited as nanoparticles (NPs) on base metal oxides. The catalytic performance of supported gold NPs can be created by choosing the kind of support materials, by controlling the size of gold, and by building up strong contact of gold with the supports. Since perimeter interfaces around gold NPs act, in principle, as the active sites for oxidation and hydrogenation, gold should be smaller than 10 nm in diameter. A new area of research is clusters, which are smaller than 2 nm in diameter and less than 200 atoms. Gold clusters possess electronic structures different from those of bulk gold and at the same time provide increased fractions of edges and corners which are highly unsaturatedly coordinated sites. Accordingly, gold clusters will be blessed by unique catalytic performance, and many examples have recently been emerging. This article summarizes such examples in terms of “size- and structure-specificity,” covering gas-phase free clusters, polymer- or organic-ligand-stabilized clusters in liquid phase, and clusters supported on base metal oxides, carbon materials, and organic polymers for gas-phase and liquid-phase reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.