Abstract

Formic acid and ethanol oxidations on spherical platinum nanoparticles dispersed on carbon with different loadings have been studied. The increasing loading of the catalyst leads to a lower diffusion flux of reactants in the internal parts of the catalyst layer, resulting in a lower apparent activity. In some cases, as in ethanol oxidation, it may also affect the diffusion of the products. As a practical consequence, the structure of the supporting layer and the catalyst loading should be optimized so that the maximum catalyst utilization is obtained. Finally, these diffusion effects may mask some important catalytic activity increase of the nanoparticles. In the case of formic acid, a significant increase in the activity is obtained for very small nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.