Abstract

In order to assess the environmental risks of a compound it is imperative to have suitable and reliable techniques for its determination in environmental matrices. In this paper, we focused on a method development for the recently introduced online coupling of a field flow fractionation (FFF) system to an Orbitrap-HRMS, that allows the simultaneous size and concentration determination of different aqueous fullerene aggregates and their concentrations in different size fractions. A 0.05% NH4OH solution in water was identified as the best carrier liquid for the analysis of the three different aqueous fullerene suspensions (C60 [60], [6,6]-phenyl-C61 butyric acid methyl ester ([60]PCBM) and [6,6]-(bis)phenyl-C61 butyric acid methyl ester ([60]bisPCBM)). The multi-angle light scattering (MALS) data received after employing the ammonia solution was consistent with both the theory and calibration using well defined Au and latex particles. The LODs obtained using Orbitrap HRMS detection were 0.1μgL−1 for an injection volume of 100μL which are significantly better than the LODs obtained by using UV (20μgL−1) and MALS detectors (5μgL−1). However, these LODs can be further improved as in theory there is no limit to the amount of sample that can be injected into the FFF. Environmental samples (river and sewage water) were spiked with fullerenes and the fractograms obtained for these samples revealed that the matrix does affect the size of fullerene aggregates. Information on the size distribution can be useful for the risk assessment of these particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.