Abstract

Engineering cobalt ferrites for application in health and biomedical science poses a challenge in terms of nanoscale morphology with a controlled size, shape, and thermochemical stability coupled with controlled properties for biocompatibility. Here, we report a simple one-step, low temperature approach to produce crystalline, nanosized cobalt ferrites (CFO) with a size ∼4.7 nm and demonstrate their applicability in breast cancer treatment. Inherent physiochemical and magnetic properties, which are quite important for biomedical applications, along with cytotoxicity of CFO nanoparticles (NPs) are investigated in detail. X-ray diffraction analyses confirm the cubic spinel phase with the tensile strain in crystalline CFO NPs. Chemical bonding analyses using infrared and Raman spectroscopic studies also support the cubic spinel phase. Electron microscopy and small-angle X-ray scattering revealed the narrow particle-size distribution and spherical-shape morphology. The as-synthesized CFO NPs exhibit superparamagnetic character. Unsaturated magnetization behavior suggests the existence of disordered spins in the surface layers. The temperature dependence of the magnetic parameters, namely, saturation magnetization, coercivity, retentivity, and squareness ratio, also supports the surface-localized spins. Cytotoxic activity of the as-synthesized CFO NPs against the human breast cancer (MCF-7) cell line and normal human peripheral blood mononuclear cells (PBMC) has been evaluated. The mild response of CFO NPs in terms of their antiproliferative nature against cancer cells and negligible Cytotoxicity reflecting their human-safe-and-friendly nature makes them suitable for bioapplications. Moreover, assessment of toxicity toward human red blood cells (RBC) revealed (<3%) hemolysis as compared to the positive control, suggesting potential applications of CFO NPs for human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.