Abstract

The aim of this study is to develop a novel sixth-order weighted essentially nonoscillatory (WENO) finite difference scheme. To design new WENO weights, we present two important measurements: a discontinuity detector (at the cell boundary) and a smoothness indicator. The interpolation method is implemented by using exponential polynomials with tension parameters such that they can be tuned to the characteristics of the given data, yielding better approximation near steep gradients without spurious oscillations, compared to the WENO schemes based on algebraic polynomials at lower computational cost. A detailed analysis is performed to verify that the proposed scheme provides the required convergence order of accuracy. Some numerical experiments are presented and compared with other sixth-order WENO schemes to demonstrate the new algorithm's ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.