Abstract

The intracellular parasite Trypanosoma cruzi, the causative agent of Chagas disease, is known to comprise heterogeneous populations. One possibility to explain the obviously distinct phenotypes of different T. cruzi strains is differential expression of particular genes. This could result in environmental adaptations of the parasite within host organs, leading to distinct clinical symptoms. With the aim of identifying differentially expressed genes, we examined different T. cruzi strains by suppression subtractive hybridization analysis. The isolated clones were sequenced and Blasted for sequence-homology with known T. cruzi genes. A stage-specific glycoprotein (82gp), an 85-kDa protein with homology to heat-shock proteins, a beta-tubulin gene, a hexosetransporter, a dehydrogenase/ prostaglandin F2alpha-synthase and a cathepsin B-like protease were identified. The expression of these genes was analyzed by RT-PCR. Diverse expression patterns were detected for different T. cruzi strains, but no specific correlation between the gene expression and the classification of groups could be found. We discuss the presumed importance of these T. cruzi gene expression patterns for future strategies of molecular therapy of Chagas disease. For pathological studies, other parameters such as distinct gene/antigen expression could also be of interest, because they probably likewise correlate with distinct phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.