Abstract

The present competitive market is focusing industrial efforts on producing high-quality products with the lowest possible cost. To help accomplish this objective, various quality improvement philosophies have been put forward in recent years and of these Six Sigma has emerged as perhaps the most viable and efficient technique for process quality improvement. The work in this paper focuses on implementing the DMAIC (Define, Measurement, Analyze, Improve, and Control) based Six Sigma approach in order to optimize the radial forging operation variables. In this research, the authors have kept their prime focus on minimizing the residual stress developed in components manufactured by the radial forging process. Analysis of various critical process parameters and the interaction among them was carried out with the help of Taguchi's method of experimental design. To optimize the results obtained and to make the analysis more precise and cost effective, response surface methodology (RSM) was also incorporated. The optimized parameters obtained using Taguchi method and RSM were then tested in an industrial case study and a trade-off made to finalize the recommended process parameters used in manufacture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.