Abstract

Mycobacteriophage L5, a temperate phage of mycobacteria, integrates site-specifically into the Mycobacterium smegmatis chromosome. We have identified the int gene and attP site of L5, characterized the chromosomal attachment site (attB), and constructed plasmid vectors that efficiently transform M. smegmatis through stable site-specific integration of the plasmid into the bacterial genome. These integration-proficient plasmids also efficiently transform slow-growing mycobacteria such as the pathogen Mycobacterium tuberculosis and the vaccine strain bacille Calmette-Guérin (BCG). The ability to easily generate stable recombinants in these slow-growing mycobacteria without the requirement for continual selection is of particular importance for the construction of recombinant BCG vaccines and for the isolation and characterization of mycobacterial pathogenic determinants in animal model systems. Integration vectors of this type should be of general use in a number of additional bacterial systems where temperate phages have been identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.