Abstract

Development of a simple and efficient methodology to control the placement, spacing, and alignment of single-walled carbon nanotubes (SWCNTs) is essential for nanotechnology device application. Building on the growing understanding that the strong π-π interaction between the bases of single-stranded DNA (ssDNA) and CNTs is sufficient not only to drive CNT solubility in water but also to stabilize individual nanotubes against clustering in aqueous solution, a new motif for functionalizing DNA origami (DO) with CNTs is demonstrated. CNTs solubilized via wrapping with ssDNA react with DO constructs displaying linear arrays of ssDNA, leading to immobilization of the CNTs onto the DO scaffold. This study demonstrates the immobilization of ssDNA-wrapped CNTs at specific positions on single DO constructs. Furthermore, multiple DO constructs assembled into extended one-dimensional arrays have been used to successfully align pairs of CNTs exceeding 500 nm in length in a parallel orientation. This result provides a simplified, alternative approach to immobilization of CNTs with programmed spacing and orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.