Abstract

Coupling genetically encoded target sequences with specific and selective labeling strategies has made it possible to utilize fluorescence spectroscopy in complex mixtures to investigate the structure, function, and dynamics of proteins. Thus, there is a growing need for a repertoire of such labeling approaches to deploy based on a given application and to utilize in combination with one another by orthogonal reactivity. We have developed a simple approach to synthesize a fluorescent probe that binds to a poly-histidine sequence. The amino group of cysteine was converted into nitrilotriacetate to create a metal-chelating cysteine molecule, Cys-nitrilotriacetate. Two Cys-nitrilotriacetate molecules were then cross-linked using dibromobimane to generate a fluorophore capable of binding a His-tag on a protein, NTA(2)-BM. NTA(2)-BM is a potential fluorophore for selective tagging of proteins in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.