Abstract
Multi-energy computed tomography (MCT) has a great potential in material decomposition, tissue characterization, lesion detection, and other applications. However, the severe noise that exists within projections makes it difficult to obtain high-quality MCT images. To overcome this limitation, we propose a method termed Spectral-Image Similarity-based Tensor with Enhanced-sparsity Reconstruction (SISTER) method. SISTER utilizes the non-local feature similarity in the spatial-spectral domain by clustering similar spatial-spectral patches within non-local window to a 4th-order tensor group. Compared with the image gradient L0-norm with tensor dictionary learning (L0TDL) method, by adopting tensor decomposition rather than tensor dictionary learning, SISTER overcomes the instability of tensor dictionary. Besides, in our SISTER method the weight coefficients update strategy is also optimized. Both numerical simulation and preclinical dataset were performed to evaluate and validate the performance of SISTER. Qualitative and quantitative results show that the proposed method can lead to a promising improvement of edge preservation, finer feature recovery, and noise suppression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.