Abstract

High-frequency oscillations caused by voltage source converters (VSCs) in current control timescale (less than 20 ms) have brought great challenges to the security and stable operation of the VSC-dominated power systems. However, relevant studies on this multi-input multi-output (MIMO) system still lack enough mechanism cognitions of its voltage amplitude/phase dynamics. Thus, this paper will propose a single-input single-output (SISO) equivalent method of this MIMO system to separately study its amplitude/phase dynamics. First, a linearized VSC model based on internal voltage motion equation in current control timescale is derived. This model can explicitly depict VSC's self-characteristic, which is suitable for multi-VSC voltage amplitude/phase dynamic analyses. Then, with reserving and converting the interactions of other outputs into one output, the MIMO system based on this VSC model can be equivalent into the amplitude motion and the phase motion, respectively. These two SISO systems are extremely convenient for engineers to study the mechanisms of the voltage amplitude/phase dynamics. Besides, this SISO equivalent method of the MIMO system can also be used to quantitatively analyze the interactions among the multi-VSC. Finally, the application of this method is illustrated in a single VSC system and the time domain simulations validate the correctness of the analyses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.