Abstract

Myocardial 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) metabolizes a nucleoside 2′,3′-cyclic phosphate to a nucleoside 2′-phosphate. Recently, the roles of CNPase in the pathophysiological processes of heart failure have emerged. The mitochondrial acylome subjected to SIRT3 regulation give us comprehensive understanding of acylation modifications to a vast array of protein targets, and the list of acetylated mitochondrial proteins is still growing. However, it remains elusive whether CNPase is subjected to the regulation of acetylation and deacetylation, and the effects of which on CNPase enzymatic activity are still unknown. In this study, the mitochondrial distribution of CNPase was identified by immunofluorescence and cytosol/mitochondria fractioning. The immunofluorescence staining pattern of CNPase and Sirt3 overlapped on the same focal plane. Moreover, Sirt3 associates directly with CNPase, and the CNPase enzymatic activity was subjected to Sirt3 activity. Then biochemical methods using acetic anhydride was employed to acetylate the CNPase proteins, the enzymatic activity of CNPase decreased. Furthermore, co-immunoprecipitation coupled mass spectrometry identifies K196, K379, K128 as the main acetylation sites. Molecular dynamic simulation shows that acetylation modification suppressed the CNPase enzymatic activity through decreasing the opening probability of the binding pocket and restricting substrate accessibility. Together with these findings, this study reveals a molecular mechanism underlying Sirt3 regulating CNPase enzymatic activity, and suggests that targeting CNPase's post-translational modifications represents a promising therapeutic strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.