Abstract
Studies were made on copper/graphite based powders and sintered compacts for industrial applications. The dependence of particle shape on friction in the powder mass, compression ratio, and electrical receptivity of powder metallurgy components was studied using near spherical precipitated copper powders and angular or flakelike powders generated by mechanical comminution. Results reveal that powders with particles that are nearly spherical in shape have lower friction, lower compression ratios, and higher electrical resistivities in sintered compacts than powders with acicular or flakelike particles. Also, the effects produced by the small additions of lead and zinc (up to 2·5 wt-%) on the electrical resistivity and hardness of sintered copper–graphite compacts are also presented, and the influence of variation of briguetting pressure is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.