Abstract

Diradicals are essential species in a wide range of chemical processes, whereas the computational study of their electronic structure often remains a challenge due to near-degeneracy of the frontier molecular orbitals. The fixed-node diffusion quantum Monte Carlo (FN-DMC) method is employed to calculate adiabatic energy gaps of some typical diradicals with the Slater-Jastrow trial wavefunction. The antisymmetrized part of the trial wavefunction is taken to be a linear combination of a minimum number of determinants using RB3LYP orbitals from the closed-shell singlet state or ROB3LYP orbitals from the triplet state. Our results show that using the two-determinant-Jastrow trial wavefunction is necessary to achieve reliable energy differences between closed-shell singlet states. The energy of the triplet state with MS = 1 is calculated to be lower than that with MS = 0 with FN-DMC even using trial wavefunctions with spin-pure states as their antisymmetrized parts and this difference is reduced with better orbitals. This indicates that the fixed-node error is smaller for the triplet state with MS = 1. Adiabatic energy gaps obtained from the present FN-DMC calculations are in reasonable agreement with available experimental values. Compared with results of the high level EOM-SF-CC method, energy gaps of FN-DMC with RB3LYP orbitals are slightly better than those using ROB3LYP orbitals and results of EOM-SF-CCSD. The present FN-DMC calculations using the simplest ansatz for the trial wavefunction can achieve reasonable results for these diradicals and they can readily be applied to large diradicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.