Abstract

The discovery of singlet-triplet (ST) inversion in some π-conjugated triangle-shaped boron carbon nitrides is a remarkable breakthrough that defies Hund's first rule. Deeply rooted in strong electron-electron interactions, ST inversion has garnered significant interest due to its potential to revolutionize triplet harvesting in organic LEDs. Using the well-established Pariser-Parr-Pople model for correlated electrons in π-conjugated systems, we employ a combination of CISDT and restricted active space configuration interaction calculations to investigate the photophysics of several triangular boron carbon nitrides. Our findings reveal that ST inversion in these systems is primarily driven by a network of alternating electron-donor and electron-acceptor groups in the molecular rim, rather than by the triangular molecular structure itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.