Abstract

Here, we report a switching method of singlet oxygen (1O2) generation based on the adsorption/desorption of porphyrins to gold nanoparticles driven by sulfide (thiol or disulfide) compounds. The generation of 1O2 by photosensitization is effectively suppressed by the gold nanoparticles and can be restored by a sulfide ligand exchange reaction. The on/off ratio of 1O2 quantum yield (ΦΔ) reached 7.4. By examining various incoming sulfide compounds, it was found that the ligand exchange reaction on the gold nanoparticle surface could be thermodynamically or kinetically controlled. The remaining gold nanoparticles in the system still suppress the generation of 1O2, which can be precipitated out simultaneously with porphyrin desorption by the proper polarity choice of the incoming sulfide to restore the 1O2 generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.