Abstract

The exploitation of singlet fission (SF) in photovoltaic devices is restricted by the limited number of SF materials available and the conflicting requirement of intermolecular interactions to satisfy both efficient SF and subsequent triplet extraction. Intramolecular SF (iSF) represents an emerging alternative and may prove simpler to implement in devices. On account of the excellent chemical structure tunability and solution processability, conjugated polymers have emerged as promising candidates for iSF materials despite being largely underexplored. It remains a significant challenge to develop SF-capable conjugated polymers and achieve efficient dissociation of the formed triplet pairs simultaneously. In this contribution, we present a new iSF material in a para-azaquinodimethane-based quinoidal conjugated polymer. Using transient optical techniques, we show that an ultrafast iSF process dominates the deactivation of the excited state in such polymer, featuring ultrafast population (<1 ps) and stepwise dissociation of triplet pairs. Notably, these multiexciton states could further diffuse apart to produce long-lived free triplets (tens of μs) in strongly coupled aggregates in solid thin film. Such findings not only introduce a new iSF-active conjugated polymer to the rare SF material family but also shed unique insight into interchain interaction-promoted triplet pair dissociation in aggregates of conjugated polymers, thus openning new avenues for developing next-generation SF-based photovoltaic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.