Abstract
We have investigated structural change in rat liver DNA produced by different isolation procedures and specifically compared the integrity of DNA derived by phenol extraction from isolated and purified nuclei with preparations extracted immediately from a crude liver homogenate containing intact nuclei. As indicated by stepwise elution from benzoylated DEAE-cellulose, most structural change in DNA was evident following nuclei isolation. Damage principally involved generation of single-stranded regions in otherwise double-stranded DNA fragments; totally single-stranded DNA was not detected by hydroxylapatite chromatography. Caffeine gradient elution suggested formation of single-stranded regions extending for up to several kilobases. In neutral sucrose gradients, differences in sedimentation rates of respective DNA samples consequent upon S1 nuclease digestion could be detected after isolation of nuclei, though not in other circumstances. The observed single-strand-specific nuclease digestion of DNA could apparently be reduced if steps were taken to reduce autodigestion during nuclei isolation by reduction of temperature and covalent cation concentration. The results are discussed in terms of the use of exogenous and endogenous nucleases in chromatin fractionation studies involving isolated nuclei and possible artifactual findings that may be generated by single-strand-specific autodigestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.