Abstract

Heat-transfer coefficients are reported for one surface, a pin-fin surface with 50 mm square base area. The In Line pin-fin surface comprised of 1 mm square pin fins that were 1 mm high and located on a 2 mm square pitch array it that covering the base. The channel was 
 1 mm high and had a glass top plate. The data were produced while boiling R113 at atmospheric pressure. For this surface, the mass flux range was 50 - 250 kW/m2s and the heat flux range was 5 - 140 kW/m2. The results obtained have been compared with standard correlations for tube bundles. The measured heat-transfer coefficients for the pin-fin surface are slightly higher any surface. It is dependent on heat flux and reasonably independent of mass flux and vapor quality. Thus, heat transfer is probably dominated by nucleate boiling and is increased by the pin fins due to increasing in area and heat-transfer coefficient, the pin-fin pressure drops were typically larger than other values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.