Abstract

Cellulose synthase (CesA) genes encode the enzymes that synthesize cellulose; therefore, CesAs play central roles in plant development and affect the yield and quality of wood, essential properties for industrial applications of plant biomass. To effectively manipulate wood biosynthesis in trees and improve wood quality, we thus require a better understanding of the natural variation in CesAs. Association studies have emerged as a powerful tool for identification of variation associated with quantitative traits. Here, we used a candidate gene-based association mapping approach to identify PtoCesA7 allelic variants that associate with growth and wood quality traits in Populus tomentosa. We isolated a full-length PtoCesA7 cDNA and observed high PtoCesA7 expression in xylem, consistent with the xylem-specific expression of CesA7. Nucleotide diversity and linkage disequilibrium (LD) in PtoCesA7, sampled from the P. tomentosa natural distribution, revealed that PtoCesA7 harbors high nucleotide diversity (π(T) = 0.0091) and low LD (r(2) ≥ 0.1, within 800 bp). By association analysis, we identified seven single-nucleotide polymorphisms (SNPs) (false discovery rate Q < 0.10) and 12 haplotypes (Q < 0.10) that associated with growth and wood properties, explaining 3.62-10.59 % of the phenotypic variance. We also validated 9 of the 10 significant marker-trait associations in at least one of three smaller subsets (climatic regions) or in a linkage-mapping population. Thus, our study identified functional PtoCesA7 allelic variants associated with growth and wood quality traits, giving new insights into genes affecting wood quality and quantity. From an applied perspective, the SNPs revealed in this study have potential applications in marker-assisted breeding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.