Abstract

In this paper we consider the single-machine hierarchical scheduling problems with release dates and preemption, where the primary criterion is the total completion time and the secondary criterion is an arbitrarily regular scheduling criterion, which is of either the sum-form or the max-form. We aim to find a feasible preemptive schedule that minimizes the secondary criterion, subject to the condition that the primary criterion is minimized. We show that the variants of the problems under study are polynomially solvable. To address these problems, we develop new solution techniques that establish some hereditary properties for the feasible schedules and instances, and present a complete description of the feasible schedules through some elaborately constructed job-permutations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.