Abstract

Bioelectrochemical systems (BESs) can control electric flow and resultant microbial activity. We designed a single chamber BES to investigate hydrogen production from artificial garbage slurry. A 3-electrode system was applied and the potential of the working electrode was regulated to −1.0V (vs. Ag/AgCl). Thus, the potential on the counter electrode was 1.38V (vs. Ag/AgCl). Hydrogen fermentation in the BES was initiated by methanogenic seed sludge. The BES achieved a hydrogen production rate of 2196mLL−1day−1 at an organic loading rate of 58.7g dichromate chemical oxygen demandL−1day−1. Acetate and butyrate were the main products, indicating that favorable hydrogen fermentation occurred in the system. Combination of high potential on the counter electrode and relatively low pH condition (5.5–6.4) was effective for constructing hydrogen fermentation even in single chamber system by inhibiting methanogenesis. However, it may be necessary to increase the space between the working and counter electrodes so as to decrease the electrical input. The single-chamber BES could be scaled-up for efficient hydrogen fermentation from garbage slurry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.