Abstract

To explore the cytological characteristics of tetralogy of Fallot (TOF), we collected samples and investigated the differences in the cytological classification between normal fetal hearts and fetal hearts with congenital defects. We then performed single-cell sequencing analysis to search for possible differential genes of disease markers. Here, the right ventricles of a heart sample with TOF and a healthy human fetal heart sample were analyzed through single-cell sequencing. Data quality control filtering, comparison, quantification, and identification of recovered cells on the raw data were performed using Cell Ranger, thereby ultimately obtaining gene expression matrices for each cell. Subsequently, Seurat was used for cell filtration, standardization, cell subgroup classification, differential expression gene analysis of each subgroup, and marker gene screening. Bioinformatic analysis identified 9,979 and 15,224 cells from the healthy and diseased samples, respectively, with an average read depth of 25,000/cell. The cardiomyocyte cell populations, derived from the abnormal samples identified through the first-level graph-based analysis, were separated into six distinct cell clusters. Our study provides some information on TOF in a fetus, which can offer a new reference for the early detection and treatment of TOF by comparing defective heart cells with normal heart cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.