Abstract

Photonic crystals and microcavities act as on-chip nano-optical tweezers for identification and manipulation of biological objects. Until now, optical trapping of virus and bacteria has been achieved and their presence in the vicinity of the optical resonator is deduced by the shift in the resonant wavelength. Here, we show trapping and identification of bacteria through a properly tuned silicon on insulator microcavity. Through the spatial and temporal observations of bacteria–cavity interaction, the optical identification of three different kinds of bacteria is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.