Abstract

A novel single-step technique is introduced for preparation of three-dimensional highly porous graphene (3D-HPG) without the need for a backbone substrate. Using bagasse as a solid source of carbon (instead of a hydrocarbon-based gas) and a copper salt, gram-scale 3D graphene nanostructures with admirable quality could be achieved in a cost-efficient manner. The products were characterized by SEM, TEM, Raman, XPS, XRD, and ASAP. Specific surface area (SSA) of almost 3000m2/g was resulted via a simultaneous activation treatment that generated nanopores in the graphene-based samples. The as-prepared 3D-HPG exhibited favorable methane adsorption capability (0.115mg/mg at 5bar and almost 0.2mg/mg at 35bar) at ambient temperatures. This new synthesis method can be of great significance as it provides an economical approach for mass production of graphene, desired in adsorbed natural gas (ANG) storage technology, high-capacity lithium ion batteries (LIB), supercapacitors, and enhanced oil recovery (EOR) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.