Abstract

A novel label-free electrochemiluminescence (ECL) immunosensor based on luminol functional-Au NPs@polypyrrole has been developed for the detection of carcinoembryonic antigen (CEA). In this work, polypyrrole prepared by chemical polymerization provided a large surface area to load amounts of gold nanoparticles (Au NPs). Au NPs could not only attach abundant luminol for the enhancement of ECL signal, but also provide a friendly microenvironment for the immobilization of antibodies. Moreover, 1-butylpyridinium tetrafluroborate ([BPy]BF4) were used to disperse luminol functional-Au NPs@polypyrrole nanocomposites, resulting in the film-formation of composites on the electrode, which could improve the stability of immunosensor. In particular, employment of single-step cycle pulse could limit the consecutive reaction between luminol and H2O2 efficiently, thus leading to stable and strong signals. The proposed method presents good ECL response for the detection of CEA allowing a wide linear range from 0.01 pg/mL to 10 ng/mL and a limit of detection as low as 3 fg/mL. The immunosensor would be a promising tool in the early diagnosis of CEA due to its high sensitivity, simplicity and cost-effective.

Highlights

  • To further enhance the chemiluminescence of luminol, metal nanoparticles were often applied as catalysts[17,18]

  • The morphologies of PPy and Au NPs@PPy were characterized by Scanning electron microscope (SEM)

  • A label-free ECL immunosensor has been developed based on the luminol-Au NPs@PPy as antibody carriers and sensing platform, which provides the advantages of simplicity in design and in operation from an application standpoint

Read more

Summary

Introduction

To further enhance the chemiluminescence of luminol, metal nanoparticles were often applied as catalysts[17,18]. Nanostructured PPy played a vital role to increase the electrical conductivity of the biosensor, in that their long π -conjugated backbone facilitating the rapid electron transfer These excellent properties attract great interest in the field of biosensor for the possible implementation of PPy on the constructing of electrode interfaces. The proposed label-free ECL immunosensor exhibited high sensitivity for CEA with a linear range from 0.01 pg/mL to 10 ng/mL and a low detection limit of 3 fg/mL. It would be promising and effective method for the recognition of target CEA

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.