Abstract

By metal-organic vapor-phase epitaxy, we have fabricated InAs quantum dots (QDs) on InGaAs/GaAs metamorphic buffer layers on a GaAs substrate with area densities that allow addressing single quantum dots. The photoluminescence emission from the quantum dots is shifted to the telecom C-band at 1.55 μm with a high yield due to the reduced stress in the quantum dots. The lowered residual strain at the surface of the metamorphic buffer layer results in a reduced lattice mismatch between the quantum dot material and growth surface. The quantum dots exhibit resolution-limited linewidths (mean value: 59 μeV) and low fine-structure splittings. Furthermore, we demonstrate single-photon emission (g(2)(0)=0.003) at 1.55 μm and decay times on the order of 1.4 ns comparable to InAs QDs directly deposited on GaAs substrates. Our results suggest that these quantum dots can not only compete with their counterparts deposited on InP substrates but also constitute an InAs/GaAs-only approach for the development of non-classical light sources in the telecom C-band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.