Abstract

An investigation of the pressure drop and impingement zone heat transfer coefficient trends of a single-phase microscale impinging jet was undertaken. Microelectromechanical system (MEMS) processes were used to fabricate a device with a 67-μm orifice. The water jet impinged on an 80-μm square heater on a normal surface 200 μm from the orifice. Because of the extremely small heater area, the conjugate convection-conduction heat transfer process provided an unexpected path for heat losses. A numerical simulation was used to estimate the heat losses, which were quite large. Pressure loss coefficients were much higher in the range Red,o<500 than those predicted by available models for short orifice tubes; this behavior was likely due to the presence of the wall onto which the jet impinged. At higher Reynolds numbers, much better agreement was observed. Area-averaged heat transfer coefficients up to 80,000 W/m2 K were attained in the range 70<Red<1900. This corresponds to a 400 W/cm2 heat flux at a 50°C temperature difference. However, this impingement zone heat transfer coefficient is nearly an order-of-magnitude less than that predicted by correlations developed from macroscale jet data, and the dependence on the Reynolds number is much weaker than expected. Further investigation of microjet heat transfer is needed to explain the deviation from expected behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.