Abstract
In this paper, we focus on single periodic Riemann problems for a class of meta-analytic functions, i.e. null-solutions to polynomially Cauchy–Riemann equation. We first establish decomposition theorems for single periodic meta-analytic functions. Then, we give a series expansion of single periodic meta-analytic functions, and derive generalised Liouville theorems for them. Next, we introduce a definition of order for single periodic meta-analytic functions at infinity, and characterise their growth at infinity. Finally, applying the decomposition theorem for single periodic meta-analytic functions, we get explicit expressions of solutions and condition of solvability to Riemann problems for single periodic meta-analytic functions with a finite order at infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.