Abstract

Atmospheric aerosols, produced as a consequence of different anthropogenic and natural processes, impart significant control over the global energy budget, climate, and human–environmental health. Their size varies across the nano–micrometer scale. Based on their origin, they may be classified into primary or secondary aerosols. Biomass burning, incomplete combustion of fossil fuels, volcanic eruptions, and traffic-related and wind-driven suspensions contribute to primary aerosol emissions. In contrast, gas-to-particle conversion within the atmosphere leads to secondary particle production. The study of atmospheric aerosols is vital to the field of atmospheric research. The dynamic nature (highly variable concentration composition and size with space and time) of aerosols makes them difficult to investigate. Today, aerosol research involves the application of various spectrometric and spectroscopic techniques. The single-particle analysis of aerosols is yet a challenge. In this review, the merits and demerits of various offline and online techniques used for aerosol research are discussed in a nutshell. Mass spectrometric techniques fail in distinguishing certain species. However, Raman spectroscopy’s emergence for the compositional analysis of aerosols resolves most of the present characterization challenges. This review focuses on Raman spectroscopy applications, the merits of this technique, and its immense scope for the measurement of various types of aerosols and their properties. Surface-enhanced Raman spectroscopy (SERS) has an advantage over conventional micro-Raman spectroscopy (MRS). The review depicts the dominance of SERS, specifically in the context of the measurement of ambient atmospheric aerosols. This review discusses two important components, namely laboratory simulation and ambient aerosol studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.