Abstract

Our human-specific symbolic number skills that underpin science and technology spring from nonsymbolic set size representations. Despite the significance of numerical competence, its single-neuron mechanisms in the human brain are unknown. Wetherefore recorded from single neurons in the medial temporal lobe of neurosurgical patients that performed a calculation task. We found that distinct groups of neurons represented either nonsymbolic or symbolic number, but not both number formats simultaneously. Numerical information could be decoded robustly from the population of neurons tuned to nonsymbolic number and with lower accuracy also from the population of neurons selective to number symbols. The tuning characteristics of selective neurons may explain why set size is represented only approximately in behavior, whereas number symbols allow exact assessments of numerical values. Our results suggest number neurons as neuronal basis of human number representations that ultimately give rise to number theory and mathematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.