Abstract

Accumulation of somatic mutations in human neurons is associated with aging and neurodegeneration. To shed light on the somatic mutational burden in Alzheimer's disease (AD) neurons and get more insight into the role of somatic mutations in AD pathogenesis, we performed single-neuron whole genome sequencing to detect genome-wide somatic mutations (single nucleotide variants (SNVs) and Indels) in 96 single prefrontal cortex neurons from 8 AD patients and 8 elderly controls. We found that the mutational burden is ∼3000 somatic mutations per neuron genome in elderly subjects. AD patients have increased somatic mutation burden in AD-related annotation categories, including AD risk genes and differentially expressed genes in AD neurons. Mutational signature analysis showed somatic SNVs (sSNVs) primarily caused by aging and oxidative DNA damage processes but no significant difference was detected between AD and controls. Additionally, functional somatic mutations identified in AD patients showed significant enrichment in several AD-related pathways, including AD pathway, Notch-signaling pathway and Calcium-signaling pathway. These findings provide genetic insights into how somatic mutations may alter the function of single neurons and exert their potential roles in the pathogenesis of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.