Abstract
In this work, a molecule “walking” along a single chain of a synthetic helical polymer, which is used as a rail on a substrate in an organic solvent at room temperature, is observed. The walking comprises the unidirectional processive movement of a short-chain molecule along a chiral helical chain in 3 nm steps, driven by Brownian motion and a tapping effect of the atomic force microscopy tip based on a flash ratchet mechanism. Furthermore, the rail consists of a long-chain substituted phenylacetylene polymer with pendant cholesteryl groups, along which the short-chain molecule can walk as a result of van der Waals interactions. The macromolecular motion is videoed using a fast-scanning atomic force microscope, and additionally, this phenomenon is also simulated by all-atom molecular dynamics calculations. On the basis of these results, we propose the principle of a polymer molecular motor. This is the first report of a synthetic walking machine of a chiral helical polymer driven by thermal fluctuation as an artificial life function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.