Abstract
Amyloid-beta (Aβ42) aggregates are characteristic Alzheimer's disease signatures, but probing how their nanoscale architectures influence their growth and decay remains challenging using current technologies. Here, we apply time-lapse single-molecule orientation-localization microscopy (SMOLM) to measure the orientations and rotational "wobble" of Nile blue (NB) molecules transiently binding to Aβ42 fibrils. We correlate fibril architectures measured by SMOLM with their growth and decay over the course of 5 to 20 min visualized by single-molecule localization microscopy (SMLM). We discover that stable Aβ42 fibrils tend to be well-ordered and signified by well-aligned NB orientations and small wobble. SMOLM also shows that increasing order and disorder are signatures of growing and decaying fibrils, respectively. We also observe SMLM-invisible fibril remodeling, including steady growth and decay patterns that conserve β-sheet organization. SMOLM reveals that increased fibril architectural heterogeneity is correlated with dynamic remodeling and that large-scale fibril remodeling tends to originate from strongly heterogeneous local regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.