Abstract

The use of an amino-pyridyl substituted β-diketone, N-(2-pyridyl)-ketoacetamide (paaH), has allowed for the isolation of two new families of isostructural mononuclear lanthanide complexes with general formulae: [Ln(paaH*)2(H2O)4][Cl]3·2H2O (Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5) and Y (6)) and [Ln(paaH*)2(NO3)2(MeOH)][NO3] (Ln = Tb (7), Dy (8), Ho (9) and Er (10)). The dysprosium members of each family (3 and 8) show interesting slow magnetic relaxation features. Compound 3 displays Single Molecule Magnet (SMM) behaviour in zero DC field with an energy barrier to thermal relaxation of Ea = 177(4) K (123(2) cm−1) with τ0 = 2.5(8) × 10−7 s, while compound 8 shows slow relaxation of the magnetization under an optimum DC field of 0.2 T with an energy barrier to thermal relaxation of Ea = 64 K (44 cm−1) with τ0 = 6.2 × 10−7 s. Ab initio multiconfigurational calculations of the Complete Active Space type have been employed to elucidate the electronic and magnetic structure of the low-lying energy levels of compounds 2–5 and 8. The orientation of the anisotropic magnetic moments for compounds 2–5 are rationalized using a clear and succinct, chemically intuitive method based on the electrostatic repulsion of the aspherical electron density distributions of the lanthanides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.