Abstract

We consider a single machine scheduling problem with changing processing times. The processing conditions are subject to a general cumulative effect, in which the processing time of a job depends on the sum of certain parameters associated with previously scheduled jobs. In previous papers, these parameters are assumed to be equal to the normal processing times of jobs, which seriously limits the practical application of this model. We further generalize this model by allowing every job to respond differently to these cumulative effects. For the introduced model, we solve the problem of minimizing the makespan, with and without precedence constraints. For the problem without precedence constraints, we also consider a situation in which a maintenance activity is included in the schedule, which can improve the processing conditions of the machine, not necessarily to its original state. The resulting problem is reformulated as a variant of a Boolean programming problem with a quadratic objective, known as a half-product, which allows us to develop a fully polynomial-time approximation scheme with the best possible running time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.