Abstract

The potential of InAs quantum-dot (QD) photodetectors for room-temperature high-speed operation at wavelengths near 1.3 μm is evaluated. Specifically, planar metal-semiconductor-metal structures on GaAs substrates containing one absorption layer of self-assembled InAs QDs embedded in Ga(In)As matrices are fabricated, characterized, and analyzed. Light absorption, optically generated carrier transport, and collection mechanisms are studied. The role of the QD embedding matrix in the lateral transport of the photogenerated carriers is also studied by comparing structures with QDs in GaAs and In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.15</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.85</sub> As matrices. Devices show low dark currents in tens of nanoamperes and high light sensitivity when adjusted to QD volumes, whereas external quantum efficiency remains in the range 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-5</sup> -10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> for all fabricated samples. The time response of the fabricated devices is obtained using an excitation wavelength resonant with QD interband transitions, thus allowing the photogeneration of electron-hole pairs inside the dots. Results prove detection capability of a single layer of QDs in a common photodetector structure with a full-width half-maximum time response on the order of 10 ps. A long tail, about 100 ps, but at a small fraction of the peak response amplitude, is also observed, suggesting mechanisms for charge transport and collection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.