Abstract

Microfluidic paper-based analytical devices (μPADs) have experienced an unprecedented story of success. In particular, as of today, most people have likely come into contact with one of their two most famous examples─the pregnancy or the SARS-CoV-2 antigen test. However, their sensing performance is constrained by the optical readout of nanoparticle agglomeration, which typically allows only qualitative measurements. In contrast, single-impact electrochemistry offers the possibility to quantify species concentrations beyond the pM range by resolving collisions of individual species on a microelectrode. Within this work, we investigate the integration of stochastic sensing into a μPAD design by combining a wax-patterned microchannel with a microelectrode array to detect silver nanoparticles (AgNPs) by their oxidative dissolution. In doing so, we demonstrate the possibility to resolve individual nanoparticle collisions in a reference-on-chip configuration. To simulate a lateral flow architecture, we flush previously dried AgNPs along a microchannel toward the electrode array, where we are able to record nanoparticle impacts. Consequently, single-impact electrochemistry poses a promising candidate to extend the limits of lateral flow-based sensors beyond current applications toward a fast and reliable detection of very dilute species on site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.