Abstract

BackgroundThe all-inside graft-link technique for anterior cruciate ligament reconstruction is performed with two cortical suspension devices with adjustable loops on both femur and tibia. This technique requires meticulous graft preparation. The aim of this study was to biomechanically test three different graft configurations resulting from differences in initial graft length.Materials and methodsThirty bovine digital extensor tendons were arranged in three different ways: “half-quadrupled”, “tripled” and “quadrupled”. The final graft length was 65–75 mm. The specimens were fixed vertical to the loading axis of a tensile testing machine. After a static pre-conditioning of 50 N for 5 min, a load to failure test was performed and data regarding the ultimate failure load (UFL), the stiffness and mode of failure were recorded.ResultsThe evaluation of UFL showed a significant differences between group means as determined by one-way analysis of variance (F = 21.92, p = 0.002). Post hoc comparisons showed a significantly better UFL of “tripled” (p = 0.007) and “quadrupled” preparations (p = 0.014) compared to the “half-quadrupled” configuration, with no significant differences between “tripled” and “quadrupled” grafts (p = 0.061). No significant differences were found when evaluating the stiffness between the groups. Failure occurred by tendon slippage across the suture in all specimens.ConclusionThe “quadrupled” tendon achieved the best UFL, with even the “tripled” configuration having sufficient biomechanical characteristics to withstand the loads experienced during early rehabilitation. For this reason, with a total semitendinosus length of less than 260 mm it could be better to “triple” instead of “half-quadruple” it to achieve better performance of the graft.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.