Abstract

In calculations based on density functional theory, the "HOMO-LUMO gap" (difference between the highest occupied and lowest unoccupied molecular orbital energies) is often used as a low-cost, ad hoc approximation for the lowest excitation energy. Here we show that a simple correction based on rigorous ensemble density functional theory makes the HOMO-LUMO gap exact in principle and significantly more accurate in practice. The introduced perturbative ensemble density functional theory approach predicts different and useful values for singlet-singlet and singlet-triplet excitations, using semilocal and hybrid approximations. Excitation energies are similar in quality to time-dependent density functional theory, especially at high fractions of exact exchange. The approach therefore offers an easy-to-implement and low-cost route to robust prediction of molecular excitation energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.