Abstract

Biocompatible antibody-nanoparticle conjugates have attracted interest as anticancer agents due to their potential to selectively target therapeutic agents at disease sites. However, new formulation and conjugation approaches are urgently needed to improve their uniformity for clinical applications. Here, a pH-responsive benzaldehyde-functionalized poly[oligo(ethylene glycol) methacrylate-st-para-formyl phenyl methacrylate]-b-poly[2-(diisopropyl)aminoethyl methacrylate] [P(OEGMA-st-pFPMA)-b-PDPA] block copolymer, prepared by reversible addition-fragmentation chain transfer polymerization, produced PEGylated nanoparticles (pH ∼ 7.4) by a single emulsion-solvent evaporation formulation approach. Efficient site-specific attachment of an aminooxy-functionalized anti-EGFR single-domain antibody (sdAb) on these benzaldehyde-decorated nanoparticles is achieved by oxime bond formation. These nanoconjugates can specifically bind EGFR (modified ELISA) and have enhanced uptake over nonfunctionalized controls in EGFR-positive HeLa cells. Encapsulation of rhodamine 6G dye and its dispersion upon cellular uptake, consistent with nanoparticle stability loss at pH < 5.7, prove their ability to facilitate triggered release in endosomal compartments and highlight their potential for use as next-generation antibody-drug nanoconjugates for therapeutic drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.