Abstract

Tellurium tubular crystals were grown by direct thermal evaporation of tellurium metal in an inert atmosphere on quartz substrates at ambient pressure without employing any catalyst. Tellurium powder was evaporated by heating at 600 °C and was condensed at a substrate temperature of 300–350 °C in the downstream of argon gas at a flow rate of 100 mL/min. The structure and chemical composition of the as-synthesized samples were examined by X-ray diffraction analysis, scanning electron microscopy, energy-dispersive X-rays microanalysis and micro-Raman spectroscopy. Scanning electron microscopy images and X-ray diffraction patterns showed that the as-synthesized Te had a tubular single-crystalline morphology with a hexagonal cross-section. The Te microtubes were typically 0.5–6 mm long, 30–70 μm in external diameter, and 5–20 μm thick. NO 2 gas-sensing properties of the Te microtubes at room temperature were also investigated. They showed a promising sensitivity and response towards tested gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.