Abstract

A single crystal of α-trans-cinnamic acid was synthesized with a (13)C-label at the β-carbon position and photoreacted to yield the [2+2] cycloaddition product, α-truxillic acid. (13)C{(1)H} cross-polarization (CP) single-crystal NMR experiments were performed on the unreacted and sequentially photoreacted samples for different goniometer orientations, and the spectra were simulated using the SIMMOL and SIMPSON software packages. Atomic coordinates from single-crystal X-ray diffraction data were used as inputs in the simulations, which allowed the chemical shift tensor to be precisely measured and related to the unit cell (or molecular) reference frame of cinnamic acid. The line widths of the (13)C resonances observed at different goniometer rotations were utilized to estimate the orientational dispersion of the cinnamic acid species, which ultimately provides a measure of disorder in the single crystal. The photoreacted sample, a solid solution of cinnamic and truxillic acids, maintained its single-crystal nature, even up to 44% conversion to truxillic acid, keeping its P2(1)/n symmetry. Upon photoirradiation, however, a slight loss of order was observed in the cinnamic acid species as evidenced by an increase in the (13)C NMR line widths, demonstrating that NMR can be used to monitor subtle orientational imperfections in single crystal to single crystal photoreactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.