Abstract
Bladder cancer is one of the most prevalent malignancies, and the mechanisms underlying its progression and the role of the tumor microenvironment (TME) are unclear. Recent advancements in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) enable detailed analysis of the cellular heterogeneity, gene expression, and cell-cell interactions in bladder diseases. We conducted a comprehensive search for recent articles that have investigated bladder diseases using scRNA-seq and ST. scRNA-seq and ST have led to significant discoveries in bladder disease research. These technologies have enabled the identification of multiple molecular subtypes within individual tumors and of the mechanisms of treatment resistance. Additionally, molecular differences based on gender have been explored, explaining the heterogeneity of the incidence and progression of bladder cancer. These findings deepen our understanding of the pathology of bladder diseases and highlight the transformative potential of scRNA-seq and ST in identifying novel biomarkers and therapeutic targets. Integrating scRNA-seq and ST has considerably enhanced our understanding of tumor heterogeneity and the tumor microenvironment within tissues. These insights may lead to the development of personalized therapies and the improvement of patient outcomes. Several challenges, such as technical limitations and access difficulties, need to be addressed for the future clinical application of these technologies.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have